Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model
Using the spectral element (SE) dynamical core within the National Center for Atmospheric Research–Department of Energy Community Atmosphere Model (CAM), a regionally refined nest at 0.25° (~28 km) horizontal resolution located over the North Atlantic is embedded within a global 1° (~111 km) grid. A 23-yr simulation using Atmospheric Model Intercomparison Project (AMIP) protocols and default CAM, version 5, physics is compared to an identically forced run using the global 1° (~111 km) grid without refinement. The addition of a refined patch over the Atlantic basin does not noticeably affect the global circulation. In the area where the refinement is located, large-scale precipitation increases with the higher resolution. This increase is partly offset by a decrease in precipitation resulting from convective parameterizations, although total precipitation is also slightly higher at finer resolutions. Equatorial waves are not significantly impacted when traversing multiple grid spacings. Despite the grid transition region bisecting northern Africa, local zonal jets and African easterly wave activity are highly similar in both simulations. The frequency of extreme precipitation events increases with resolution, although this increase is restricted to the refined patch. Topography is better resolved in the nest as a result of finer grid spacing. The spatial patterns of variables with strong orographic forcing (such as precipitation, cloud, and precipitable water) are improved with local refinement. Additionally, dynamical features, such as wind patterns, associated with steep terrain are improved in the variable-resolution simulation when compared to the uniform coarser run.
document
http://n2t.net/ark:/85065/d7nk3g7z
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-04-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:42:54.843583