Identification

Title

Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index

Abstract

The radiative effects of Saharan dust aerosols are investigated in the NASA GEOS-5 atmospheric general circulation model. A sectional aerosol microphysics model (CARMA) is run online in GEOS-5. CARMA treats the dust aerosol lifecycle, and its tracers are radiatively coupled to GEOS-5. A series of AMIP-style simulations are performed, in which input dust optical properties (particle shape and refractive index) are varied. Simulated dust distributions for summertime Saharan dust compare well to observations, with best results found when the most absorbing dust optical properties are assumed. Dust absorption leads to a strengthening of the summertime Hadley cell circulation, increased dust lofting to higher altitudes, and a strengthening of the African easterly jet, resulting in increased dust atmospheric lifetime and farther northward and westward transport. We find a positive feedback of dust radiative forcing on emissions, in contrast with previous studies, which we attribute to our having a relatively strong longwave forcing caused by our simulating larger effective particle sizes. This longwave forcing reduces the magnitude of midday net surface cooling relative to other studies, and leads to a nighttime warming that results in higher nighttime wind speeds and dust emissions. The radiative effects of dust particle shape have only minor impact on transport and emissions, with small (~5%) impact on top of atmosphere shortwave forcing, in line with previous studies, but relatively more pronounced effects on shortwave atmospheric heating and surface forcing (~20% increase in atmospheric forcing for spheroids). Shape effects on longwave heating terms are of order ~10%.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7hd7wmd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-01-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T01:13:24.635610

Metadata language

eng; USA