Identification

Title

Impacts of model horizontal resolution on mean sea surface temperature biases in the Community Earth System Model

Abstract

Impacts of model horizontal resolution on sea surface temperature (SST) biases are studied using high-resolution (HR) and low-resolution (LR) simulations with the Community Earth System Model (CESM) where the nominal resolutions are 0.1 degrees for ocean and sea-ice and 0.25 degrees for atmosphere and land in HR, and 1 degrees for all component models in LR, respectively. Results show that, except within eastern boundary upwelling systems, SST is warmer in HR than LR. Globally averaged surface ocean heat budget analysis indicates that 1 degrees C warmer global-mean SST in HR is mainly attributable to stronger nonlocal vertical mixing and shortwave heat flux, with the former prevailing over the latter in eddy-active regions. In the tropics, nonlocal vertical mixing is slightly more important than shortwave heat flux for the warmer SST in HR. Further analysis shows that the stronger nonlocal mixing in HR can be attributed to differences in both the surface heat flux and shape function strength used in the parameterization. In addition, the shape function shows a nonlinear relationship with surface heat flux in HR and LR, modulated by the eddy-induced vertical heat transport. The stronger shortwave heat flux in HR, on the other hand, is mainly caused by fewer clouds in the tropics. Finally, investigation of ocean advection reveals that the improved western boundary currents in HR also contribute to the reduction of SST biases in eddy-active regions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7r2158p

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:44.413890

Metadata language

eng; USA