Identification

Title

A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors

Abstract

Many structural and dynamical features of the ionized and neutral upper atmosphere are strongly organized by the geomagnetic field, and several magnetic coordinate systems have been developed to exploit this organization. Quasi-Dipole coordinates are appropriate for calculations involving horizontally stratified phenomena like height-integrated currents, electron densities, and thermospheric winds; Modified Apex coordinates are appropriate for calculations involving electric fields and magnetic field-aligned currents. The calculation of these coordinates requires computationally expensive tracing of magnetic field lines to their apexes. Interpolation on a precomputed grid provides faster coordinate conversions, but requires the overhead of a sufficiently fine grid, as well as finite differencing to obtain coordinate base vectors. In this paper, we develop a compact and robust representation of the transformation from geodetic to Quasi-Dipole (QD), Apex, and Modified Apex coordinates, by fitting the QD coordinates to spherical harmonics in geodetic longitude and latitude. With this representation, base vectors may be calculated directly from the expansion coefficients. For an expansion truncated at order 6, the fitted coordinates deviate from the actual coordinates by a maximum of 0.4°, and typically by 0.1°. The largest errors occur in the equatorial Atlantic region. Compared to interpolation on a pre-computed grid, the spherical harmonic representation is much more compact and produces smooth base vectors. An algorithm for efficiently and concurrently computing scalar and vector spherical harmonic functions is provided in the appendix. Computer code for producing the expansion coefficients and evaluating the fitted coordinates and base vectors is included in the auxiliary material.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7rb753g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-08-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:24:10.895990

Metadata language

eng; USA