Identification

Title

Parameter estimation for computationally intensive nonlinear regression with an application to climate modeling

Abstract

Nonlinear regression is a useful statistical tool, relating observed data and a nonlinear function of unknown parameters. When the parameter-dependent nonlinear function is computationally intensive, a straightforward regression analysis by maximum likelihood is not feasible. The method presented in this paper proposes to construct a faster running surrogate for such a computationally intensive nonlinear function, and to use it in a related nonlinear statistical model that accounts for the uncertainty associated with this surrogate. A pivotal quantity in the Earth's climate system is the climate sensitivity: the change in global temperature due to doubling of atmospheric CO₂ concentrations. This, along with other climate parameters, are estimated by applying the statistical method developed in this paper, where the computationally intensive nonlinear function is the MIT 2D climate model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7fb54hw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 Institute of Mathematical Statistics.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:55:12.691516

Metadata language

eng; USA