Identification

Title

Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity

Abstract

Diurnal variations in atmospheric water vapor are studied by analyzing 30-min-averaged data of atmospheric precipitable water (PW) for 1996–2000 derived from Global Position System (GPS) observations from 54 North America stations. Vertical structures in the diurnal cycle of atmospheric water vapor are examined using 3-hourly radiosonde data from Lamont, Oklahoma, during the 1994 - 2000 period. Significant diurnal variations of PW are found over most of the stations. The diurnal (24 hour) cycle, S1, which explains over 50% of the subdaily variance, has an amplitude of 1.0 - 1.8 mm over most of the central and eastern United States during summer and is weaker in other seasons. The S1 peaks around noon in winter and from midafternoon to midnight in summer. The semidiurnal (12 hour) cycle is generally weak, with an amplitude of a few tenths of 1 mm. At Lamont, specific humidity in the free troposphere is significantly higher in the early morning (0000–0008 local solar time (LST)) than during the day (0800 - 1800 LST). This diurnal variation changes little from -4 to 16 km above the ground. Near the surface, specific humidity tends to be lower in the morning than in the afternoon and evening in all seasons except summer. This near-surface diurnal cycle propagates upward through the lower troposphere (up to -4 km). Errors in seasonal mean humidity due to undersampling the diurnal cycle with twice-daily synoptic soundings (at 0000 and 1200 UTC) are generally small (within ±3% or ±0.5 mm for PW), but it can easily reach 5 - 10% if there is only one random sounding per day. Several physical processes are proposed that could contribute to the diurnal variations in atmospheric water vapor.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7p55nps

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2002-05-22T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2002 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:42:03.555996

Metadata language

eng; USA