Identification

Title

Theoretical expressions for the ascent rate of moist deep convective thermals

Abstract

An approximate analytic expression is derived for the ratio lambda of the ascent rate of moist deep convective thermals and the maximum vertical velocity within them; lambda is characterized as a function of two non-dimensional buoyancy-dependent parameters y and h and is used to express the thermal ascent rate as a function of the buoyancy field. The parameter y characterizes the vertical distribution of buoyancy within the thermal, and h is the ratio of the vertically integrated buoyancy from the surface to the thermal top and the vertical integral of buoyancy within the thermal. Theoretical l values are calculated using values of y and h obtained from idealized numerical simulations of ascending moist updrafts and compared to lambda computed directly from the simulations. The theoretical values of lambda approximate to 0.4-0.8 are in reasonable agreement with the simulated lambda (correlation coefficient of 0.86). These values are notably larger than the lambda = 0.4 from Hill's (nonbuoyant) analytic spherical vortex, which has been used previously as a framework for understanding the dynamics of moist convective thermals. The relatively large values of l are a result of net positive buoyancy within the upper part of thermals that opposes the downward-directed dynamic pressure gradient force below the thermal top. These results suggest that nonzero buoyancy within moist convective thermals, relative to their environment, fundamentally alters the relationship between the maximum vertical velocity and the thermal-top ascent rate compared to nonbuoyant vortices. Implications for convection parameterizations and interpretation of the forces contributing to thermal drag are discussed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70z762t

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 The American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:15:15.549397

Metadata language

eng; USA