Identification

Title

Relative contributions of momentum forcing and heating to high-latitude lower thermospheric winds

Abstract

We discuss the significance of potential vorticity in the thermosphere and quantify the relative contributions of momentum forcing and heating to its total time derivative in the high-latitude lower thermosphere during the southern hemisphere summertime for negative interplanetary magnetic field (IMF) B-z conditions on the basis of numerical simulations. A term analysis of the potential vorticity equation for weak or strong southward IMF (B-z=-2.0nT or -10.0nT) gives the following results: the ratios of the momentum forcing term to the heating term at 142, 123, and 111km altitudes for IMF B-z=-2.0nT are roughly 6:1, 4:1, and 2:1, respectively, indicating that the momentum forcing term makes the larger contribution to the total time derivative of the potential vorticity, although the relative contribution of the momentum forcing weakens with descending altitude. The ratios of the momentum forcing term to the heating term at 142, 123, and 111km altitudes for IMF B-z=-10.0nT are roughly 3:1, 2:1, and 1:1, indicating that, at higher altitudes, the momentum forcing term makes the larger contribution to the total time derivative of the potential vorticity, but the relative contributions of momentum forcing and heating are comparable at lower altitudes. A comparison of the heating term and the momentum forcing term for IMF B-z=-2.0nT and IMF B-z=-10.0nT conditions indicates that the heating term increases more significantly than the momentum forcing term as IMF B-z becomes more negative.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pg1th6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:10:13.168842

Metadata language

eng; USA