Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network
Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated against warm season precipitation observations from the North American Monsoon Experiment (NAME) Event Rain Gauge Network (NERN) in the complex terrain region of northwestern Mexico. Analyses of hourly and daily precipitation estimates show that the PERSIANN-CCS captures well active and break periods in the early and mature phases of the monsoon season. While the PERSIANN-CCS generally captures the spatial distribution and timing of diurnal convective rainfall, elevation-dependent biases exist, which are characterized by an underestimate in the occurrence of light precipitation at high elevations and an overestimate in the occurrence of precipitation at low elevations. The elevation-dependent biases contribute to a 1-2-h phase shift of the diurnal cycle of precipitation at various elevation bands. For reasons yet to be determined, the PERSIANN-CCS significantly underestimated a few active periods of precipitation during the late or "senescent" phase of the monsoon. Despite these shortcomings, the continuous domain and relatively high spatial resolution of PERSIANN-CCS quantitative precipitation estimates (QPEs) provide useful characterization of precipitation space–time structures in the North American monsoon region of northwestern Mexico, which should prove useful for hydrological applications.
document
http://n2t.net/ark:/85065/d7jm29v0
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2007-06-01T00:00:00Z
Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:38:01.932430