Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting
As of May 2007, the National Centers for Environmental Prediction (NCEP) implemented a new Global Data Assimilation System. This system incorporated the assimilation of global positioning system (GPS) radio occultation (RO) profiles from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission, which was launched in April 2006. Since then, this new type of observation has been shown to provide additional information on the thermodynamic state of the atmosphere, resulting in a significant increase in the model skill. Recent updates of the analysis and modeling codes have required a revision of the algorithm that assimilates GPS RO data. In addition, some modifications in the processing of the observations have further enhanced the need for a revisiting of the assimilation code. Better characterizations of the quality control procedures, observation error structure, and forward modeling for the GPS RO observations are described. The updated system significantly improves the data usage, in particular in the tropics. Different sets of the atmospheric refractive indices are also evaluated in this study. The model performance is proven to be quite sensitive to the chosen coefficients and a reevaluation of these constants is recommended within the GPS community. The new assimilation configuration results in an improvement in the anomaly correlation scores for the Southern Hemisphere extratropics (4.5 h for the 500-mb geopotential heights at day 7) and a reduction of the high- and low-level tropical wind errors. Overall, the benefits of using COSMIC on top of all the other observations used in the operational system are still very significant. The loss in model skill when COSMIC is removed from the observing system is remarkable at day 4 (8 h) and steadily increases beyond 12 h with the extended forecast range.
document
http://n2t.net/ark:/85065/d72j6cgc
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-04-01T00:00:00Z
Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:22:22.056626