An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing
In this paper, the characteristics of urban heat island (UHI) and boundary layer structures in the Beijing area, China, are analyzed using conventional and Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM) is used to simulate these urban weather features for comparison with observations. WRF is also used to test the sensitivity of model simulations to different urban land use scenarios and urban building structures to investigate the impacts of urbanization on surface weather and boundary layer structures. Results show that the coupled WRF/Noah/UCM modeling system seems to be able to reproduce the following observed features reasonably well: 1) the diurnal variation of UHI intensity; 2) the spatial distribution of UHI in Beijing; 3) the diurnal variation of wind speed and direction, and interactions between mountain-valley circulations and UHI; 4) small-scale boundary layer convective rolls and cells; and 5) the nocturnal boundary layer lower-level jet. The statistical analyses reveal that urban canopy variables (e.g., temperature, wind speed) from WRF/Noah/UCM compare better with surface observations than the conventional variables (e.g., 2-m temperature, 10-m wind speed). Both observations and the model show that the airflow over Beijing is dominated by mountain-valley flows that are modified by urban-rural circulations. Sensitivity tests imply that the presence or absence of urban surfaces significantly impacts the formation of horizontal convective rolls (HCRs), and the details in urban structures seem to have less pronounced but not negligible effects on HCRs.
document
http://n2t.net/ark:/85065/d73x87zv
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-03-01T00:00:00Z
Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:05:28.883669