Identification

Title

A novel scheme for parameterizing aerosol processing in warm clouds

Abstract

A novel 2-moment bulk aerosol parameterization is derived from a state-of-the-art 2D bin microphysics model using power law relationships and a semi-analytical technique for activation. The activation scheme predicts both number and mass of a lognormal aerosol distribution and permits the evolution of the modal mass with time. The newly developed bulk aerosol scheme is formulated for use in traditional 2-moment bulk microphysics models. The new explicit scheme is compared with the 2D bin scheme and a simple scaling aerosol parameterization, in which all the aerosol processes are scaled to the respective cloud process rates, in a kinematic model with a specified flow field. We also perform hybrid simulations in which the explicit activation formulation is coupled to the scaling parameterization. Model results demonstrate the significance of including a physically realistic representation of aerosols contained in haze, cloud droplets, and rain. It is shown that the explicit aerosol parameterization and scaling method predict similar bulk aerosol quantities and match the results of the 2D bin model only if an explicit treatment of aerosol activation, i.e., both aerosol number and mass transfer due to activation, is included in the microphysics model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72v2h0b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T01:14:59.986548

Metadata language

eng; USA