Identification

Title

Exploring Western North Pacific tropical cyclone activity in the high-resolution Community Atmosphere Model

Abstract

High-resolution climate models (similar to 28 km grid spacing) can permit realistic simulations of tropical cyclones (TCs), thus enabling their investigation in relation to the climate system. On the global scale, previous works have demonstrated that the Community Atmosphere Model (CAM) version 5 presents a reasonable TC climatology under prescribed present-day (1980-2005) forcing. However, for the Western North Pacific (WNP) region, known biases in simulated TC genesis frequency and location under-represent the basin's dominant share in observations. This study addresses these model biases in WNP by evaluating WNP TCs in a decadal simulation, and exploring potential improvements through nudging experiments. Among the major environmental controls of TC genesis, the lack of mid-level moisture is identified as the leading cause of the deficit in simulated WNP TC genesis over the Pacific Warm Pool. Subsequent seasonal experiments explore the effect of constraining the large-scale environment on TC development by nudging WNP temperature field toward reanalysis at various strengths. Temperature nudging elicits a significant response in TC genesis and intensity development, as well as in moisture and convection over the Warm Pool. These responses are sensitive to the choice of nudging timescale. Overall, the nudging experiments demonstrate that improvements in the large-scale environment can lead to improvements in simulated TCs, suggesting future model developments in relation to model physics. In this way, the potential improvements in model fidelity will contribute to the understanding of how the mean state of current or future climates may give rise to extremes such as TCs.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7959n38

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:08:05.915510

Metadata language

eng; USA