Identification

Title

Preliminary evidence of Madden‐Julian oscillation effects on ultrafast tropical waves in the thermosphere

Abstract

Over the past two decades mounting evidence demonstrated that terrestrial weather significantly influences the dynamics and mean state of the thermosphere. While important progress has been made in understanding how this coupling occurs on hourly to daily time scales, large uncertainty still exists on this effect around intraseasonal (∼30-90 days) time scales. In this work, analyses of Thermosphere Ionosphere Mesosphere Energetics Dynamics‐Sounding of the Atmosphere using Broadband Emission Radiometry temperatures near 110 km and Gravity field and steady‐state Ocean Circulation Explorer cross‐track winds near 260 km reveal prominent intraseasonal oscillations in the equatorial (±15°) zonal mean lower and middle thermosphere. Similar intraseasonal oscillations are found in the amplitudes of the diurnal eastward propagating tide with Zonal Wavenumber 3 (DE3) and the quasi‐3‐day ultrafast Kelvin wave, two prominent ultrafast tropical waves (UFTWs) excited by deep tropical tropospheric convection. Numerical simulations from the Specified‐Dynamics Whole Atmosphere Community Climate Model eXtended demonstrate a significant connection between these UFTW and the Madden‐Julian Oscillation (MJO). Compared to the boreal winter mean state, thermospheric UFTW amplitudes are larger (+5 to +12%) during MJO Phases 2-3 and smaller (-3% to −12%) during MJO Phases 6-8. Significant variations are also found with respect to the phase of the mesospheric semiannual oscillation (MSAO) and stratospheric quasi‐biannual oscillation (SQBO), with larger (±12-16%) thermospheric amplitudes during westward MSAO/SQBO phase and smaller (±3-6%) amplitudes during eastward MSAO/SQBO phase, in accordance with theoretical interpretations. This study suggests that UFTW may play a large role in coupling tropospheric intraseasonal variability to the thermosphere, raising important questions including implications for the whole atmosphere system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d74m97g5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:15:16.301986

Metadata language

eng; USA