Identification

Title

An ensemble-based explicit four-dimensional variational assimilation method

Abstract

The adjoint and tangent linear models in the traditional four-dimensional variational data assimilation (4DVAR) are difficult to obtain if the forecast model is highly nonlinear or the model physics contains parameterized discontinuities. A new method (referred to as POD-E4DVAR) is proposed in this paper by merging the Monte Carlo method and the proper orthogonal decomposition (POD) technique into 4DVAR to transform an implicit optimization problem into an explicit one. The POD method is used to efficiently approximate a forecast ensemble produced by the Monte Carlo method in a 4-dimensional (4-D) space using a set of base vectors that span the ensemble and capture its spatial structure and temporal evolution. After the analysis variables are represented by a truncated expansion of the base vectors in the 4-D space, the control (state) variables in the cost function appear explicit so that the adjoint model, which is used to derive the gradient of the cost function with respect to the control variables in the traditional 4DVAR, is no longer needed. The application of this new technique significantly simplifies the data assimilation process and retains the two main advantages of the traditional 4DVAR method. Assimilation experiments show that this ensemble-based explicit 4DVAR method performs much better than the traditional 4DVAR and ensemble Kalman filter (EnKF) method. It is also superior to another explicit 4DVAR method, especially when the forecast model is imperfect and the forecast error comes from both the noise of the initial field and the uncertainty in the forecast model. Computational costs for the new POD-E4DVAR are about twice as the traditional 4DVAR method but 5% less than the other explicit 4DVAR and much lower than the EnKF method. Another assimilation experiment conducted within the Lorenz model indicates potential wider applications of this new POD-E4DVAR method.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d79z954v

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-11-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:55:15.918029

Metadata language

eng; USA