Identification

Title

The role of ice-ocean interactions in the variability of the North Atlantic Thermohaline Circulation

Abstract

The simulated influence of Arctic sea ice on the variability of the North Atlantic climate is discussed in the context of a global coupled ice–ocean–atmosphere model. This coupled system incorporates a general circulation ocean model, an atmospheric energy moisture balance model, and a dynamic–thermodynamic sea ice model. Under steady seasonal forcing, an equilibrium solution is obtained with very little variability. To induce variability in the model, daily varying stochastic anomalies are applied to the wind forcing of the Northern Hemisphere sea ice cover. These stochastic anomalies have observed spatial patterns but are random in time. Model simulations are run for 1000 yr from an equilibrium state and the variability in the system is analyzed. The sensitivity of the system to the ice–ocean coupling of both heat and freshwater is also examined. Under the stochastic forcing conditions, the thermohaline circulation (THC) responds with variability that is approximately 10% of the mean. This variability has enhanced spectral power at interdecadal timescales that is concentrated at approximately 20 yr. It is forced by fluctuations in the export of ice from the Arctic into the North Atlantic. Substantial changes in sea surface temperature and salinity are related to changes in the overturning circulation and the sea ice coverage in the northern North Atlantic. Additionally, the THC variability influences the Arctic Basin through heat transport under the ice pack. Results from sensitivity studies suggest that the freshwater exchange from the variable ice cover is the dominant process for forcing variability in the overturning. The simulated Arctic ice export appears to provide stochastic forcing to the northern North Atlantic that excites a damped oscillatory ocean-only mode. The insulating capacity of the variable sea ice has a negligible effect on the THC. Ice–ocean thermal coupling acts to damp THC variability, causing an approximately 25% reduction in the THC standard deviation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d74b32n9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2001-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ยง108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:55:16.259699

Metadata language

eng; USA