Identification

Title

A multi-time-scale four-dimensional variational data assimilation scheme and its application to simulated radial velocity and reflectivity data

Abstract

In this study, a multi-time-scale four-dimensional variational data assimilation (MTS-4DVar) scheme is developed and applied to the assimilation of radar observations. The MTS-4DVar employs multitime windows with various time lengths in the framework of incremental 4DVar in the Weather Research and Forecasting Data Assimilation (WRFDA). The objective of MTS-4DVar is to enable the 4DVar data assimilation system to extract multiscale information from radar observations, and the algorithm of MTS-4DVar is first discussed in detail. Using a heavy rainfall case, it is shown that the nonlinearity growth of reflectivity is faster than that of radial velocity, suggesting that the time window for assimilating reflectivity in the incremental 4DVar should be shorter than that of radial velocity. A series of single observation tests and observing system simulation experiments (OSSEs) are then presented to examine the physical characteristics and performance of MTS-4DVar. These experiments demonstrate that the MTS-4DVar is capable of combining the larger-scale information from a longer time window and the local-scale features from a shorter time window. With the OSSEs it is shown that the value of the cost function is reduced properly in the minimization of the MTS-4DVar with a combination of longer and shorter time windows. By assimilating the radar radial velocity alone, we found that the MTS-4DVar reduces the analysis and forecast errors and improves the precipitation forecasts in comparison with the normal incremental 4DVar. Additional assimilation of reflectivity further improved the precipitation forecasts, and the results show that the radar reflectivity can also be well assimilated by using MTS-4DVar.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7wm1hnh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:49.935497

Metadata language

eng; USA