Identification

Title

An informal introduction to numerical weather models with low-cost hardware

Abstract

Weather, climate, and other Earth system models are growing in complexity as computing resources and technologies continue to evolve with time. Thus, models are and will remain a vital tool for scientific research. Exposure and education on the workings of such models can generate interest toward atmospheric science, and it can increase scientific literacy among the general public. Additionally, studies have suggested that early exposure to these models can affect the career trajectory of students. However, gaining exposure and experience remains difficult outside of internships, research settings, and other professional endeavors. Some of these barriers can include hardware and computing costs, curriculum structure, and access to instructors. As a means of addressing these barriers, the goal of this work is to utilize low-cost hardware and abstract away some of the complexities of running a numerical weather model without sacrificing fidelity. The approach is to create a graphical user interface (GUI) where users can quickly configure the model, run it, and analyze the output without knowledge of model configuration, system architecture, or navigation via a command line interface. The Pi-WRF application is packaged such that users can download and run the model within a matter of minutes. The application is designed to promote informal learning through hands-on experience. It is targeted toward lower secondary level students, but it can scale across grade levels, and it can be adapted for general audiences.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h41w5j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:18:45.701052

Metadata language

eng; USA