Identification

Title

Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation

Abstract

In recent years, adopting renewable energy, such as wind power, has become a national energy policy for many countries due to concerns of pollution and climate change from fossil fuel consumption. However, accurate prediction of wind is crucial in managing the power load. Numerical weather prediction (NWP) models are essential tools for wind prediction, but they need accurate initial conditions in order to produce an accurate forecast. However, NWP models are not guaranteed to have accurate initial conditions over wind farms in isolated locations. This study hypothesizes that short-term, 0-3 h, wind forecast can be improved by assimilating anemometer wind speed observations from wind farm turbines into a numerical weather forecast system. A technique was developed to circumvent the requirement of simultaneously ingesting the wind speed and direction in a data assimilation/weather forecasting system. A six-day case study revealed that assimilating wind speed can improve the 0-3 h wind speed (power) forecast by reducing the mean absolute error up to 0.5-0.6 m s(-1) (30-40%). (C) 2017 Elsevier Ltd. All rights reserved.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7k939bv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 Elsevier.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:48:00.753028

Metadata language

eng; USA