Identification

Title

Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI

Abstract

Biomass burning emits an estimated 25 % of global annual nitrogen oxides (NOx), an important constituent that participates in the oxidative chemistry of the atmosphere. Estimates of NOx emission factors, representing the amount of NOx per mass burned, are primarily based on field or laboratory case studies, but the sporadic and transient nature of wildfires makes it challenging to verify whether these case studies represent the behavior of the global fires that occur on earth. Satellite remote sensing provides a unique view of the earth, allowing for the study of emissions and downwind evolution of NOx from a large number of fires. We describe direct estimates of NOx emissions and lifetimes for fires using an exponentially modified Gaussian analysis of daily TROPOspheric Monitoring Instrument (TROPOMI) retrievals of NO2 tropospheric columns. We update the a priori profile of NO2 with a fine-resolution (0.25∘) global model simulation from NASA's GEOS Composition Forecasting System (GEOS-CF), which largely enhances NO2 columns over fire plumes. We derive representative NOx emission factors for six fuel types globally by linking TROPOMI-derived NOx emissions with observations of fire radiative power from Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite-derived NOx emission factors are largely consistent with those derived from in situ measurements. We observe decreasing NOx lifetime with fire emissions, which we infer is due to the increase in both NOx abundance and hydroxyl radical production. Our findings suggest promise for applying space-based observations to track the emissions and chemical evolution of reactive nitrogen from wildfires.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dn48hz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-10-18T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:15:30.060916

Metadata language

eng; USA