Identification

Title

Uncertainty in contaminant concentration fields resulting from atmospheric boundary layer depth uncertainty

Abstract

The relationship between atmospheric boundary layer (ABL) depth uncertainty and uncertainty in atmospheric transport and dispersion (ATD) simulations is investigated by examining profiles of predicted concentrations of a contaminant. Because ensembles are an important method for quantifying uncertainty in ATD simulations, this work focuses on the utilization and analysis of ensemble members' ABL structures for ATD simulations. A 12-member physics ensemble of meteorological model simulations drives a 12-member explicit ensemble of ATD simulations. The relationship between ABL depth and plume depth is investigated using ensemble members, which vary both the relevant model physics and the numerical methods used to diagnose ABL depth. New analysis methods are used to analyze ensemble output within an ABL-depth relative framework. Uncertainty due to ABL depth calculation methodology is investigated via a four-member mini-ensemble. When subjected to a continuous tracer release, concentration variability among the ensemble members is largest near the ABL top during the daytime, apparently because of uncertainty in ABL depth. This persists to the second day of the simulation for the 4-member diagnosis mini-ensemble, which varies only the ABL depth, but for the 12-member physics ensemble the concentration variability is large throughout the daytime ABL. This suggests that the increased within-ABL concentration variability on the second day is due to larger differences among the ensemble members' predicted meteorological conditions rather than being solely due to differences in the ABL depth diagnosis methods. This work demonstrates new analysis methods for the relationship between ABL depth and plume depth within an ensemble framework and provides motivation for directly including ABL depth uncertainty from a meteorological model into an ATD model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7cz385w

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:04:53.501302

Metadata language

eng; USA