Identification

Title

Characterization of high‐m ULF wave signatures in GPS TEC data

Abstract

GPS total electron content (TEC) measurements were used to investigate high-m ultralow frequency (ULF) waves during the recovery phase of a geomagnetic storm. ULF wave signals in TEC data show high coherence and significant common power in the wavelet coherence and cross wavelet transform analyses with magnetic field radial component data from GOES-15. They did not cause significant ionospheric scintillation or ground magnetic signatures due to ionospheric screening effects. An automatic identification procedure is developed to identify ULF wave signature in TEC data from 10 GPS receivers on January 25, 2016. The waves were mainly distributed on the dayside and post dusk sector from similar to 64 degrees to similar to 71 degrees magnetic latitude. This is the first time that the large-scale 2D spatial structure and temporal evolution of high-m ULF waves are revealed, which demonstrates TEC measurements as an effective high-m ULF wave remote sensing tool.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pn993c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-07-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:25.721068

Metadata language

eng; USA