Identification

Title

Characterizing changes in Eastern U.S. pollution events in a warming world

Abstract

Risk assessments of air pollution impacts on human health and ecosystems would ideally consider a broad set of climate and emission scenarios, as well as natural internal climate variability. We analyze initial condition chemistry-climate ensembles to gauge the significance of greenhouse-gas-induced air pollution changes relative to internal climate variability, and consider response differences in two models. To quantify the effects of climate change on the frequency and duration of summertime regional-scale pollution episodes over the Eastern United States (EUS), we apply an Empirical Orthogonal Function (EOF) analysis to a 3-member GFDL-CM3 ensemble with prognostic ozone and aerosols and a 12-member NCAR-CESM1 ensemble with prognostic aerosols under a 21st century RCP8.5 scenario with air pollutant emissions frozen in 2005. Correlations between GFDL-CM3 principal components for ozone, PM2.5 and temperature represent spatiotemporal relationships discerned previously from observational analysis. Over the Northeast region, both models simulate summertime surface temperature increases of over 4 degrees C from 2006-2025 to 2081-2100 and PM2.5 of up to 1-4 mu g m(-3). The ensemble average decadal incidence of upper quartile Northeast PM2.5 events lasting at least three days doubles in GFDL-CM3 and increases by similar to 50% in CESM1. In other EUS regions, inter-model differences in PM2.5 responses to climate change cannot be explained solely by internal climate variability. Our EOF-based approach anticipates future opportunities to data-mine initial condition chemistry-climate model ensembles for probabilistic assessments of changing regional-scale pollution and heat event frequency and duration, while obviating the need to bias-correct concentration-based thresholds separately in individual models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7b56pfb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:14.359776

Metadata language

eng; USA