Identification

Title

Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber

Abstract

This paper presents results from the first large-scale in situ intercomparison of oxygenated volatile organic compound (OVOC) measurements. The intercomparison was conducted blind at the large (270 m³) simulation chamber, Simulation of Atmospheric Photochemistry in a Large Reaction Chamber (SAPHIR), in Jülich, Germany. Fifteen analytical instruments, representing a wide range of techniques, were challenged with measuring atmospherically relevant OVOC species and toluene (14 species, C₁ to C₇) in the approximate range of 0.5 - 10 ppbv under three different conditions: (1) OVOCs with no humidity or ozone, (2) OVOCs with humidity added (r.h. ≈ 50%), and (3) OVOCs with ozone (≈60 ppbv) and humidity (r.h. ≈ 50%). The SAPHIR chamber proved to be an excellent facility for conducting this experiment. Measurements from individual instruments were compared to mixing ratios calculated from the chamber volume and the known amount of OVOC injected into the chamber. Benzaldehyde and 1-butanol, compounds with the lowest vapor pressure of those studied, presented the most overall difficulty because of a less than quantitative transfer through some of the participants' analytical systems. The performance of each individual instrument is evaluated with respect to reference values in terms of time series and correlation plots for each compound under the three measurement conditions. A few of the instruments performed very well, closely matching the reference values, and all techniques demonstrated the potential for quantitative OVOC measurements. However, this study showed that nonzero offsets are present for specific compounds in a number of instruments and overall improvements are necessary for the majority of the techniques evaluated here.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7639pxt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-10-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:55:38.865246

Metadata language

eng; USA