Identification

Title

Impact of UAS Global Hawk dropsonde data on tropical and extratropical cyclone forecasts in 2016

Abstract

A preliminary investigation into the impact of dropsonde observations from the Global Hawk (GH) on tropical and extratropical forecasts is performed using the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). Experiments are performed during high-impact weather events that were sampled as part of the NOAA Unmanned Aerial Systems (UAS) Sensing Hazards with Operational Unmanned Technology (SHOUT) field campaigns in 2016: 1) three extratropical systems in February 2016 and 2) Hurricanes Matthew and Nicole in the western Atlantic. For these events, the benefits of GH observations under a satellite data gap scenario are also investigated. It is found that the assimilation of GH dropsondes reduces the track error for both Matthew and Nicole; the improvements are as high as 20% beyond 60 h. Additionally, the localized dropsondes reduce global forecast track error for four tropical cyclones by up to 9%. Results are mixed under a satellite gap scenario, where only Hurricane Matthew is improved from assimilated dropsondes. The improved storm track is attributed to a better representation of the steering flow and atmospheric midlevel pattern. For all cases, dropsondes reduce the root-mean-square error in temperature, relative humidity, wind, and sea level pressure by 3%-8% out to 96 h. Additional benefits from GH dropsondes are obtained for precipitation, with higher skill scores over the southeastern United States versus control forecasts of up to 8%, as well as for low-level parameters important for severe weather prediction. The findings from this study are preliminary and, therefore, more cases are needed for statistical significance.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7n019c2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:08.708006

Metadata language

eng; USA