Identification

Title

A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model

Abstract

Arctic mixed-phase clouds are ubiquitous, and the persistence of supercooled liquid is not well understood. Prior studies of mixed-phase clouds predict a single axis length assuming spherical particles or mass–dimensional relationships derived from in situ data. These methods cannot mechanistically evolve particle shape, leading to inaccuracies in estimates of mixed-phase lifetime. Parts I and II of this study report on the development and parcel model testing of an adaptive habit parameterization that predicts two bulk crystal lengths. The method is implemented into a two-dimensional kinematic model in which the dynamic flow field is prescribed, allowing for sedimentation and separate advection of length mixing ratios. Similar to other studies, results show that mass–dimensional relationships produce large variation of phase, despite similar choice in particle type. Results with evolving ice habit promote phase maintenance in cases where mass-dimensional methods glaciate the layers. Adaptive habit simulations with sedimentation increase cloud lifetime at higher ice concentrations but can also lead to lower liquid amounts. Radiative cooling initially increases ice growth with a subsequent enhanced sedimentation flux, altering cloud-phase partitioning dependent on ice concentration. Surface latent and sensible heat fluxes of 50 W m⁻² result in an increase in overall water mass, while compensating fluxes establish sufficient energy and mass amounts for liquid and ice maintenance. These studies provide insight into the fluxes that may be necessary for mixed-phase cloud maintenance.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7zp4704

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Y2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:48:11.090315

Metadata language

eng; USA