Identification

Title

Effects of parameterized diffusion on simulated hurricanes

Abstract

In this study the authors analyze and interpret the effects of parameterized diffusion on the nearly steady axisymmetric numerical simulations of hurricanes presented in a recent study. In that study it was concluded that horizontal diffusion was the most important control factor for the maximum simulated hurricane intensity. Through budget analysis it is shown here that horizontal diffusion is a major contributor to the angular momentum budget in the boundary layer of the numerically simulated storms. Moreover, a new scale analysis recognizing the anisotropic nature of the parameterized model diffusion shows why the horizontal diffusion plays such a dominant role. A simple analytical model is developed that captures the essence of the effect. The role of vertical diffusion in the boundary layer in the aforementioned numerical simulations is more closely examined here. It is shown that the boundary layer in these simulations is consistent with known analytical solutions in that boundary layer depth increases and the amount of "overshoot" (maximum wind in excess of the gradient wind) decreases with increasing vertical diffusion. However, the maximum wind itself depends mainly on horizontal diffusion and is relatively insensitive to vertical diffusion; the overshoot variation with vertical viscosity mainly comes from changes in the gradient wind with vertical viscosity. The present considerations of parameterized diffusion allow a new contribution to the dialog in the literature on the meaning and interpretation of the Emanuel potential intensity theory.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78916gv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:47:31.963635

Metadata language

eng; USA