Identification

Title

Vertical resolution requirements in atmospheric simulation

Abstract

The role of vertical mesh spacing in the convergence of full-physics global atmospheric model solutions is examined for synoptic, mesoscale, and convective-scale horizontal resolutions. Using the MPAS-Atmosphere model, convergence is evaluated for three solution metrics: the horizontal kinetic energy spectrum, the Richardson number probability density function, and resolved flow features. All three metrics exhibit convergence in the free atmosphere for a 15-km horizontal mesh when the vertical grid spacing is less than or equal to 200 m. Nonconvergence is accompanied by noise, spurious structures, reduced levels of mesoscale kinetic energy, and reduced Richardson number peak frequencies. Coarser horizontal mesh solutions converge in a similar manner but contain much less noise than the 15-km solutions for coarse vertical resolution. For convective-scale resolution simulations with 3-km cell spacing on a variable-resolution mesh, solution convergence is almost attained with a vertical mesh spacing of 200 m. The boundary layer scheme is the dominant source of vertical filtering in the free atmosphere. Although the increased vertical mixing at coarser vertical mesh spacing depresses the kinetic energy spectra and Richardson number convergence, it does not produce sufficient dissipation to effectively halt scale collapse. These results confirm and extend the results from a number of previous studies, and further emphasize the sensitivity of the energetics to the vertical mixing formulations in the model.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7959mpg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:20:15.279015

Metadata language

eng; USA