Identification

Title

Global atmospheric carbon monoxide budget 2000-2017 inferred from multi-species atmospheric inversions

Abstract

Atmospheric carbon monoxide (CO) concentrations have been decreasing since 2000, as observed by both satellite-and ground-based instruments, but global bottom-up emission inventories estimate increasing anthropogenic CO emissions concurrently. In this study, we use a multi-species atmospheric Bayesian inversion approach to attribute satellite-observed atmospheric CO variations to its sources and sinks in order to achieve a full closure of the global CO budget during 2000-2017. Our observation constraints include satellite retrievals of the total column mole fraction of CO, formaldehyde (HCHO), and methane (CH4) that are all major components of the atmospheric CO cycle. Three inversions (i.e., 2000-2017, 2005-2017, and 2010-2017) are performed to use the observation data to the maximum extent possible as they become available and assess the consistency of inversion results to the assimilation of more trace gas species. We identify a declining trend in the global CO budget since 2000 (three inversions are broadly consistent during overlapping periods), driven by reduced anthropogenic emissions in the US and Europe (both likely from the transport sector), and in China (likely from industry and residential sectors), as well as by reduced biomass burning emissions globally, especially in equatorial Africa (associated with reduced burned areas). We show that the trends and drivers of the inversion-based CO budget are not affected by the inter-annual variation assumed for prior CO fluxes. All three inversions contradict the global bottom-up inventories in the world's top two emitters: for the sign of anthropogenic emission trends in China (e.g., here 0.8 +/- 0.5% yr(-1) since 2000, while the prior gives 1.3 +/- 0.4% yr(-1)) and for the rate of anthropogenic emission increase in South Asia (e.g., here 1.0 +/- 0.6% yr(-1) since 2000, smaller than 3.5 +/- 0.4% yr(-1) in the prior inventory). The posterior model CO concentrations and trends agree well with independent ground-based observations and correct the prior model bias. The comparison of the three inversions with different observation constraints further suggests that the most complete constrained inversion that assimilates CO, HCHO, and CH4 has a good representation of the global CO budget, and therefore matches best with independent observations, while the inversion only assimilating CO tends to underestimate both the decrease in anthropogenic CO emissions and the increase in the CO chemical production.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rf5z4q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-09-18T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:07:55.582819

Metadata language

eng; USA