Identification

Title

The force-freeness of the solar photosphere: Revisit with new approach and large data sets

Abstract

Although it is generally believed that the solar photosphere is not magnetically force-free owing to its high plasma beta, the estimations of force-freeness using observed magnetograms have produced disputable results. Some studies confirmed that the photosphere is largely not force-free whereas some authors argued that the photosphere is not far away from being force-free. In a previous paper of ours we demonstrated that, due to the fact that the noise levels of the transverse field in the magnetograms are much larger than those of the vertical field, wrong judgments on the force-freeness could be made: a truly force-free field could be judged as being not-force-free and a truly not-force-free field could be judged as being force-free. Here in this Letter, we propose an approach to overcome this serious problem. By reducing the spatial resolution to lower the noise level, the heavy influence of the measurement noise on the force-freeness judgment can be significantly suppressed. We first use two analytical solutions to show the success and effectiveness of this approach. Then, we apply this new approach to two large data sets of active region magnetograms, obtained with the Helioseismic and Magnetic Imager/Solar Dynamics Observatory and Spectro-Polarimeter (SP)/Hinode, respectively. Our analysis shows that the photospheric magnetic fields are actually far away from being force-free. Particularly, and most notably, the mean value of F-z/F-p (where F-z is the net Lorentz force in the vertical direction and F-p the total Lorentz force) is as low as -0.47, with more than 98% of the active regions having divided by F-z/F-p divided by > 0.1 when using the SP/Hinode magnetograms of true field strength.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7h41wgk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:58.475604

Metadata language

eng; USA