Identification

Title

Waldmeier effect in stellar cycles

Abstract

One of the most robust features of the solar magnetic cycle is that the stronger cycles rise faster than the weaker ones. This is popularly known as the Waldmeier Effect, which has been known for more than 100 yr. This fundamental feature of the solar cycle has not only practical implications, e.g., in predicting the solar cycle, but also implications in understanding the solar dynamo. Here we ask whether the Waldmeier Effect exists in other Sun-like stars. To answer this question, we analyze the Ca II H and K S-index from Mount Wilson Observatory for 21 Sunlike G-K stars. We specifically check two aspects of Waldmeier Effect, namely, (1) WE1: the anticorrelation between the rise times and the peaks and (2) WE2: the positive correlation between rise rates and amplitudes. We show that, except for HD.16160, HD.81809, HD.155886, and HD.161239, all stars considered in the analysis show WE2, while WE1 is found to be present only in some of the stars studied. Furthermore, the WE1 correlation is weaker than the WE2. Both WE1 and WE2 exist in the solar S-index as well. Similar to the solar cycles, the magnetic cycles of many stars are asymmetric about their maxima. The existence of the Waldmeier Effect and asymmetric cycles in Sun-like stars suggests that the dynamo mechanism which operates in the Sun is also operating in other stars.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7154m8q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 The American Astronomical Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:23:16.642252

Metadata language

eng; USA