A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations
Profiling airborne radar data and accompanying large-eddy-simulation (LES) modeling are used to examine the impact of ground-based glaciogenic seeding on cloud and precipitation in a shallow stratiform orographic winter storm. This storm occurred on 18 February 2009 over a mountain in Wyoming. The numerical simulations use the Weather Research and Forecasting (WRF) Model in LES mode with horizontal grid spacings of 300 and 100 m in a domain covering the entire mountain range, and a glaciogenic seeding parameterization coupled with the Thompson microphysics scheme. A series of non-LES simulations at 900-m resolution, each with different initial/boundary conditions, is validated against sounding, cloud, and precipitation data. The LES runs then are driven by the most representative 900-m non-LES simulation. The 100-m LES results compare reasonably well to the vertical-plane radar data. The modeled vertical-motion field reveals a turbulent boundary layer and gravity waves above this layer, as observed. The storm structure also validates well, but the model storm thins and weakens more rapidly than is observed. Radar reflectivity frequency-by-altitude diagrams suggest a positive seeding effect, but time- and space-matched model reflectivity diagrams only confirm this in a relative sense, in comparison with the trend in the control region upwind of seeding generators, and not in an absolute sense. A model sensitivity run shows that in this case natural storm weakening dwarfs the seeding effect, which does enhance snow mass and snowfall. Since the kinematic and microphysical structure of the storm is simulated well, future Part II of this study will examine how glaciogenic seeding impacts clouds and precipitation processes within the LES.
document
http://n2t.net/ark:/85065/d7125tng
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-10-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:43:31.993561