Identification

Title

Comparing adaptive prior and posterior inflation for ensemble filters using an atmospheric general circulation model

Abstract

Sampling errors and model errors are major drawbacks from which ensemble Kalman filters suffer. Sampling errors arise because of the use of a limited ensemble size, while model errors are deficiencies in the dynamics and underlying parameterizations that may yield biases in the model's prediction. In this study, we propose a new time-adaptive posterior inflation algorithm in which the analyzed ensemble anomalies are locally inflated. The proposed inflation strategy is computationally efficient and is aimed at restoring enough spread in the analysis ensemble after assimilating the observations. The performance of this scheme is tested against the relaxation to prior spread (RTPS) and adaptive prior inflation. For this purpose, two model are used: the three-variable Lorenz 63 system and the Community Atmosphere Model (CAM). In CAM, global refractivity, temperature, and wind observations from several sources are incorporated to perform a set of assimilation experiments using the Data Assimilation Research Testbed (DART). The proposed scheme is shown to yield better quality forecasts than the RTPS. Assimilation results further suggest that when model errors are small, both prior and posterior inflation are able to mitigate sampling errors with a slight advantage to posterior inflation. When large model errors, such as wind and temperature biases, are present, prior inflation is shown to be more accurate than posterior inflation. Densely observed regions as in the Northern Hemisphere present numerous challenges to the posterior inflation algorithm. A compelling enhancement to the performance of the filter is achieved by combining both adaptive inflation schemes.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7f192th

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:20:11.704757

Metadata language

eng; USA