Identification

Title

A bayesian approach for statistical–physical bulk parameterization of rain microphysics. Part I: Scheme description

Abstract

A new framework is proposed for the bulk parameterization of rain microphysics: the Bayesian Observationally Constrained Statistical-Physical Scheme (BOSS). It is designed to facilitate direct constraint by observations using Bayesian inference. BOSS combines existing process-level microphysical knowledge with flexible process rate formulations and parameters constrained by observations within a Bayesian framework. Using a raindrop size distribution (DSD) normalization method that relates DSD moments to one another via generalized power series, generalized multivariate power expressions are derived for the microphysical process rates as functions of a set of prognostic DSD moments. The scheme is flexible and can utilize any number and combination of prognostic moments and any number of terms in the process rate formulations. This means that both uncertainty in parameter values and structural uncertainty associated with the process rate formulations can be investigated systematically, which is not possible using traditional schemes. In this paper, BOSS is compared to two- and three-moment versions of a traditional bulk rain microphysics scheme (denoted as MORR). It is shown that some process formulations in MORR are analytically equivalent to the generalized power expressions in BOSS using one or two terms, while others are not. BOSS is able to replicate the behavior of MORR in idealized one-dimensional rainshaft tests, but with a much more flexible and systematic design. Part II of this study describes the application of BOSS to derive rain microphysical process rates and posterior parameter distributions in Bayesian experiments using Markov chain Monte Carlo sampling constrained by synthetic observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rv0rxs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:35:39.051608

Metadata language

eng; USA