Identification

Title

The coupling between tropical meteorology, aerosol lifecycle, convection, and radiation during the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex)

Abstract

The NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) employed the NASA P-3, Stratton Park Engineering Company (SPEC) Learjet 35, and a host of satellites and surface sensors to characterize the coupling of aerosol processes, cloud physics, and atmospheric radiation within the Maritime Continent's complex southwest monsoonal environment. Conducted in the late summer of 2019 from Luzon, Philippines, in conjunction with the Office of Naval Research Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment with its R/V Sally Ride stationed in the northwestern tropical Pacific, CAMP2Ex documented diverse biomass burning, industrial and natural aerosol populations, and their interactions with small to congestus convection. The 2019 season exhibited El Nino conditions and associated drought, high biomass burning emissions, and an early monsoon transition allowing for observation of pristine to massively polluted environments as they advected through intricate diurnal mesoscale and radiative environments into the monsoonal trough. CAMP2Ex's preliminary results indicate 1) increasing aerosol loadings tend to invigorate congestus convection in height and increase liquid water paths; 2) lidar, polarimetry, and geostationary Advanced Himawari Imager remote sensing sensors have skill in quantifying diverse aerosol and cloud properties and their interaction; and 3) high-resolution remote sensing technologies are able to greatly improve our ability to evaluate the radiation budget in complex cloud systems. Through the development of innovative informatics technologies, CAMP2Ex provides a benchmark dataset of an environment of extremes for the study of aerosol, cloud, and radiation processes as well as a crucible for the design of future observing systems.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d77s7ssq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:17:39.368681

Metadata language

eng; USA