The operational mesogamma-scale analysis and forecast system of the U.S. army test and evaluation command. Part IV: The white sands missile range auto-nowcast system
During the summer months at the U.S. Army Test and Evaluation Command's (ATEC) White Sands Missile Range (WSMR), forecasting thunderstorm activity is one of the primary duties of the range forecasters. The safety of personnel working on the range and the protection of expensive test equipment depend critically on the quality of forecasts of thunderstorms and associated hazards, including cloud-to-ground lightning, hail, strong winds, heavy rainfall, flash flooding, and tornadoes. The National Center for Atmospheric Research (NCAR) Auto-Nowcast (ANC) system is one of the key forecast tools in the ATEC Four-Dimensional Weather System (4DWX) at WSMR, where its purpose is to aid WSMR meteorologists in their mission of very short term thunderstorm forecasting. Besides monitoring the weather activity throughout the region and warning personnel of potentially hazardous thunderstorms, forecasters play a key role in assisting with the day-to-day planning of test operations on the range by providing guidance with regard to weather conditions favorable to testing. Moreover, based on climatological information about the local weather conditions, forecasters advise their range customers about scheduling tests at WSMR months in advance. This paper reviews the NCAR ANC system, provides examples of the ANC system's use in thunderstorm forecasting, and describes climatological analyses of WSMR summertime thunderstorm activity relevant for long-range planning of tests. The climatological analysis illustrates that radar-detected convective cells with reflectivity of ≥35 dBZ at WSMR are 1) short lived, with 76% having lifetimes of less than 30 min; 2) small, with 67% occupying areas of less than 25 km2; 3) slow moving, with 79% exhibiting speeds of less than 4 m s−1; 4) moderately intense, with 80% showing reflectivities in excess of 40 dBZ; and 5) deep, with 80% of the storms reaching far enough above the freezing level to be capable of generating lightning.
document
http://n2t.net/ark:/85065/d75m65ww
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-04-01T00:00:00Z
Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:39:10.650172