Mechanisms for spontaneous gravity-wave generation within a dipole vortex
Previous simulations of dipole vortices propagating through rotating, stratified fluid have revealed small-scale inertia–gravity waves that are embedded within the dipole near its leading edge and are approximately stationary relative to the dipole. The mechanism by which these waves are generated is investigated, beginning from the observation that the dipole can be reasonably approximated by a balanced quasigeostrophic (QG) solution. The deviations from the QG solution (including the waves) then satisfy linear equations that come from linearization of the governing equations about the QG dipole and are forced by the residual tendency of the QG dipole (i.e., the difference between the time tendency of the QG solution and that of the full primitive equations initialized with the QG fields). The waves do not appear to be generated by an instability of the balanced dipole, as homogeneous solutions of the linear equations amplify little over the time scale for which the linear equations are valid. Linear solutions forced by the residual tendency capture the scale, location, and pattern of the inertia–gravity waves, although they overpredict the wave amplitude by a factor of 2. There is thus strong evidence that the waves are generated as a forced linear response to the balanced flow. The relation to and differences from other theories for wave generation by balanced flows, including those of Lighthill and Ford et al., are discussed.
document
http://n2t.net/ark:/85065/d76q1zhx
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-11-01T00:00:00Z
© Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:58:35.691002