Identification

Title

Sea surface drag and the role of spray

Abstract

Motivated by the possible effects of spray on the drag felt by the ocean surface in high winds, we use direct numerical simulation coupled with Lagrangian particle tracking to investigate how suspended inertial particles alter momentum flux in an idealized turbulent flow. Turbulent Couette flow is used for this purpose since the momentum flux profile is constant across the domain height; a characteristic similar to the constant-flux layer in the atmospheric surface layer. The simulations show that when inertial particles are introduced into a turbulent flow, they carry a portion of the total vertical momentum flux, and that this contribution can be significant when the particle concentration is sufficiently large. The numerical setup is also used to evaluate a dispersed phase model that treats spray effects as equivalent to an increase in stable atmospheric stratification. Our simulations suggest that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects dominate any particle-induced stratification effects.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75m66hc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-02-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-15T21:29:41.821358

Metadata language

eng; USA