Identification

Title

A multiscale alignment method for ensemble filtering with displacement errors

Abstract

High-resolution models nowadays simulate phenomena across many scales and pose challenges to the design of efficient data assimilation methods that reduce errors at all scales. Smaller-scale features experience rapid nonlinear error growth that gives rise to displacement errors, which cause suboptimal ensemble filter performance. Previous studies have started exploring methods that can reduce displacement errors. In this study, a multiscale alignment (MSA) method is proposed for ensemble filtering. The MSA method iteratively processes the model state from the largest to the smallest scales. At each scale, an ensemble filter is applied to update the state with observations, and the analysis increments are utilized to derive displacement vectors for each member that align the ensemble at smaller scales before the next iteration. The nonlinearity in smaller-scale priors is reduced by removing larger-scale displacement errors. Because the displacement vectors are derived from analysis increments in the state space rather than the nonlinear observation-space cost function formulated in previous studies, this method provides a less costly and more robust way to solve for the displacement vectors. Observing system simulation experiments using a two-layer quasigeostrophic model were conducted to provide a proof of concept of the MSA method. Results show that the MSA method significantly improves the accuracy of posteriors compared to the existing ensemble filter methods with or without multiscale localization. Advantage of the MSA method is more evident when the ensemble size is relatively small and the cycling period is comparable to the average eddy turnover time of the dynamical system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7q243dg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:07:58.873700

Metadata language

eng; USA