Identification

Title

On the importance of interactive ozone chemistry in earth‐system models for studying mesophere‐lower thermosphere tidal changes during sudden stratospheric warmings

Abstract

We use the CESM2-Whole Atmosphere Community Climate Model, to study the importance of ozone in the vertical coupling between lower and upper atmosphere during sudden stratospheric warmings (SSWs). During SSWs, the build up of stratospheric ozone concentrations at tropical latitudes and its increased asymmetrical distribution carries the potential to affect the generation of migrating and nonmigrating semidiurnal solar tides. Much of the upper atmospheric variability associated with SSWs is known to be driven by large changes in the vertically propagating semidiurnal migrating (SW2) and nonmigrating (SW1 and SW3) solar tides. In this study, we investigate the effect of stratospheric ozone variability during SSWs on these solar tides. For this purpose, a case study of the 2009 SSW event is carried out using the WACCM with two distinct simulation setups. In the first setup, the ozone concentrations are interactively calculated in the model and resemble the ozone observations during the 2009 SSW event, while in the second setup, the ozone concentrations are specified using zonal mean values. We constrain both of the simulations to the Modern-Era Retrospective Analysis for Research and Applications-2 reanalysis so that the background atmosphere through which the solar tides propagate are almost identical in each case. Following the onset of the SSW, we find that in the vicinity of the peak enhancements of SW1, SW2, and SW3 in the mesosphere-lower thermosphere (MLT), the amplitudes of these semidiurnal solar tides are approximately about 15-50% larger for the simulation with interactive ozone as compared with the one with prescribed ozone, indicating that the stratospheric ozone variability plays an important role in driving semidiurnal solar tidal changes during SSWs.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x350z0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:28.121301

Metadata language

eng; USA