Identification

Title

Dominant sources of uncertainty for downscaled climate: A military installation perspective

Abstract

While the Department of Defense (DoD) infrastructure is no stranger to extremes, recent events have been unprecedented, with climate change acting as a growing risk multiplier. To assess the level of exposure of DoD installations to extreme weather and climate events, site-specific climate information is needed. One way to bridge the scale gap between outputs from existing global climate models (GCMs) and sites is climate downscaling. This makes the information more relevant for impact assessment at the DoD installation and facility scale. However, downscaling GCMs is beset by a myriad of challenges and sources of uncertainty, and downscaling methods were not designed with specific infrastructure planning and design needs in mind. Here, we evaluate state-of-the-science dynamical downscaling and statistical downscaling and bias correction for climate variables (i.e., temperature and precipitation) at the daily scale. We also combine downscaling approaches in novel ways to optimize computational efficiency and reduce uncertainty. Furthermore, we examine the sensitivity of the downscaled outputs to the choice of reference data and quantify the relative uncertainty related to downscaling approach, reference data, and other factors across the climate variables and aggregation scales. Results show that empirical quantile mapping (EQM), a statistical downscaling, consistently performs well and has less sensitivity to the choice of reference data. Moreover, the hybrid downscaling that leverages EQM improves the performance of dynamical downscaling. Our findings highlight that the choice of reference data dominates uncertainties in temperature downscaling, while their role is more muted for precipitation but still non-negligible.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d77m0d48

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-06-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:58.176746

Metadata language

eng; USA