Identification

Title

Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate

Abstract

This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pk0gg8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2006-11-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2006 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:28.582993

Metadata language

eng; USA