Identification

Title

Implementation of an artificial neural network for storm surge forecasting

Abstract

Accurate and timely storm surge forecasts are essential during tropical cyclone events in order to assess the magnitude and location of the impacts. Coupled ocean-atmosphere dynamical models provide accurate measures of storm surge but remain too computationally expensive to run for real-time forecasting purposes. Therefore, it is common to utilize a parametric vortex model, implemented within a hydrodynamic model, which decreases computational time at the expense of forecast accuracy. Recently, data-driven neural networks are being implemented as an alternative due to their combined efficiency and high accuracy. This work seeks to examine how an artificial neural network (ANN) can be used to make accurate storm surge predictions, and explores the added value of using a recurrent neural network (RNN). In particular, it is concerned with determining the parameters needed to successfully implement a neural network model for the Mid-Atlantic Bight region. The neural network models were trained with modeled data resulting from coupling of the Hybrid Weather Research and Forecasting cyclone model (HWCM) and the Advanced Circulation Model. An ensemble of synthetic, but physically plausible, cyclones were simulated using the HWCM and used as input for the hydrodynamic model. Tests of the ANN were conducted to investigate the optimal lead-time configuration of the input data and the neural network architecture needed to minimize storm surge forecast errors. Results highlight the accuracy of the ANN in forecasting moderate storm surge levels, while indicating a deficiency in capturing the magnitude of the peak values, which is improved in the implementation of the RNN.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7wm1hv6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-07-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:13:51.563582

Metadata language

eng; USA