Identification

Title

A single ice approach using varying ice particle properties in global climate model microphysics

Abstract

Ice and mixed-phase cloud representation and simulation in global climate models are challenging with large uncertainties and biases. Sharing similar growth paths, no distinct separation exists in nature between cloud ice and snow. Different from conventional microphysics schemes separating cloud ice from snow, a single prognostic category is used to represent the whole spectrum of solid hydrometeors. Instead of using fixed physical properties for separate ice classes, e.g., the mass, area, and fall velocity, we consider the particle shape and riming impacts on ice properties. This approach simplifies several icerelated microphysical processes and eliminates the ambiguity and uncertainty associated with parameterizing cloud ice to snow conversion. The modifications were implemented in the Morrison-Gettelman (MG08) scheme and tested in Community Atmosphere Model. Evaluation using single column simulations indicated that the new approach increased the ice water content (IWC) in high clouds during dry period, which is improved compared to available retrievals. Global atmospheric simulations using the new approach give an overall comparable mean climate with notable improvement in terms of clouds and their radiative forcing. Both longwave and shortwave cloud forcing are closer to observations due to more realistic IWC, liquid water content, and cloud top height. Furthermore, the new approach yields slightly better representation of mixed-phase clouds when a smaller capacitance for nonspherical particles is used in the ice depositional growth parameterization. Overall, the physically based single-ice approach is a promising direction for future GCM microphysics development given its simplified representation of microphysical processes and flexible description of ice particle properties.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tt4th1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-09-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:17:28.111698

Metadata language

eng; USA