Assimilating surface Mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012
Surface data assimilation (DA) has the potential to improve forecasts of convection initiation (CI) and short-term forecasts of convective evolution. Since the processes driving CI occur on scales inadequately observed by conventional observation networks, mesoscale surface networks could be especially beneficial given their higher temporal and spatial resolution. This work aims to assess the impact of high-frequency assimilation of mesonet surface DA on ensemble forecasts of CI initialized with ensemble Kalman filter (EnKF) analyses of the 29 May 2012 convective event over the southern Great Plains. Mesonet and conventional surface observations were assimilated every 5 min for 3 h from 1800 to 2100 UTC and 3-h ensemble forecasts were produced. Forecasts of CI timing and location were improved by assimilating the surface datasets in comparison to experiments where mesonet data were withheld. This primarily occurred due to a more accurate representation of the boundary layer moisture profile across the domain, especially in the vicinity of a dryline and stationary boundary. Ensemble forecasts produced by assimilating surface observations at hourly intervals, instead of every 5 min, showed only minor improvements in CI. The 5-min assimilation of mesonet data improved forecasts of the placement and timing of CI for this particular event due to the ability of mesonet data to capture rapidly evolving mesoscale features and to constrain model biases, particularly surface moisture errors, during the cycling period.
document
http://n2t.net/ark:/85065/d7hd7wvj
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-09-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:20:48.326278