Identification

Title

Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling

Abstract

Automated flask sampling aboard small charter aircraft has been proposed as a low-cost, reliable method to greatly increase the density of measurements of CO2 mixing ratios in continental regions in order to provide data for assessment of global and regional CO2 budgets. We use data from the CO2 Budget and Rectification-Airborne 2000 campaign over North America to study the feasibility of using discrete (flask) sampling to determine column mean CO2 in the lowest 4 km of the atmosphere. To simulate flask sampling, data were selected from profiles of CO2 measured continuously with an onboard (in situ) analyzer. We find that midday column means can be determined without bias relative to true column means measured by the in situ analyzer to within 0.15 and better than 0.10 ppm by using 10 and 20 instantaneously collected flask samples, respectively. More precise results can be obtained by using a flask sampling strategy that linearly integrates over portions of the air column. Using less than 8-10 flasks can lead to significant sampling bias for some common profile shapes. Sampling prior to the breakup of the nocturnal stable layer will generally lead to large sampling bias because of the inability of aircraft to probe large CO2 gradients that often exist very close to the ground at night and during the early morning.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76h4hzf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2003-08-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2003 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:44:50.363218

Metadata language

eng; USA