Evaluation of Urban Canopy Models against near-surface measurements in Houston during a strong frontal passage
Urban canopy models (UCMs) in mesoscale numerical weather prediction models need evaluation to understand biases in urban environments under a range of conditions. The authors evaluate a new drag formula in the Weather Research and Forecasting (WRF) model's multilayer UCM, the Building Effect Parameterization combined with the Building Energy Model (BEP+BEM), against both in-situ measurements in the urban environment as well as simulations with a simple bulk scheme and BEP+BEM using the old drag formula. The new drag formula varies with building packing density, while the old drag formula is constant. The case study is a strong cold frontal passage that occurred in Houston during the winter of 2017, causing high winds. It is found that both BEP+BEM simulations have lower peak wind speeds, consistent with near-surface measurements, while the bulk simulation has winds that are too strong. The constant-drag BEP+BEM simulation has a near-zero wind speed bias, while the new-drag simulation has a negative bias. Although the focus is on the impact of drag on the urban wind speeds, both BEP+BEM simulations have larger negative biases in the near-surface temperature than the bulk-scheme simulation. Reasons for the different performances are discussed.
document
http://n2t.net/ark:/85065/d73r0xps
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2022-09-22T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:41:34.295800