The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth's magnetic dipole moment
The strength of the Earth's magnetic field changes over time. We use simulations with the Coupled Magnetosphere-Ionosphere-Thermosphere model to investigate how the magnetosphere, upper atmosphere, and solar quiet (Sq) geomagnetic variation respond as the geomagnetic dipole moment M varies between 2⋅10²² and 1⋅10²² Am². We find that the magnetopause stand-off distance and the cross-polar cap potential increase, while the polar cap size decreases, with increasing M. Their dependence on M is stronger than predicted by previous studies. We also show for the first time that the shape of the magnetosphere starts to change for M ≤ 4⋅10²² Am². This may be due to enhanced magnetopause erosion and/or to strong changes in the ionospheric conductance, which affect the field-aligned currents and the magnetic fields they create in the magnetosphere, thus modifying the magnetic pressure inside the magnetosphere. E × B drift velocities, Joule heating power, the global mean thermospheric temperature and the global mean height of the peak of the ionospheric F₂ layer, hmF₂, all increase with increasing M for low dipole moments, but all decrease with increasing M for larger dipole moments. The peak electron density of the F₂ layer, NmF₂, shows the opposite behavior. The Sq amplitude decreases with increasing M and this dependence can be roughly described by a power law scaling. Most scaling relations show a weak dependence on the solar activity level, which is likely associated with a change in the relative contributions to the Pedersen conductance from the upper and lower ionosphere, which scale differently with M.
document
http://n2t.net/ark:/85065/d7862h30
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-05-03T00:00:00Z
Copyright 2012 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:52:41.169191