Identification

Title

Modeling the post‐midnight equatorial plasma bubbles with SAMI3/SD‐WACCM‐X: Large‐scale wave structure

Abstract

This study investigates the relative significance of gravity wave and gravity dynamo effects in large‐scale wave structure (LSWS) development using the coupled Sami3 is Also a Model of the Ionosphere (SAMI3) and Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (SD‐WACCM‐X). Simulations show significant vertical E × B drift perturbations associated with gravity waves in the F region after ∼1700 LT, leading to LSWS near midnight. Notably, LSWS can occur independently of gravity‐driven dynamo current, emphasizing the significance of the gravity wave wind dynamo mechanism. However, LSWS exhibits more pronounced vertical E × B drift perturbations, indicating the involvement of background wind fields. Both gravity wave and background wind dynamo effects cause LSWS to grow vertically by ∼20 km and extend to ±10° in latitude. Gravity‐driven Pedersen current, therefore, plays a role in amplifying the upwelling growth and equatorial plasma bubble development. Furthermore, simulations demonstrate the emergence of predawn ionospheric irregularities in the bottomside F layer, even without gravity‐driven currents, attributed to concentric gravity waves over the magnetic equator. A comparison between FORMOSAT‐7/COSMIC2 and SAMI3 ion density is also conducted. These findings emphasize the significant influence of gravity waves and background wind fields on the formation of LSWS and irregularities.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7xd160h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:26.385902

Metadata language

eng; USA