Identification

Title

Optimal network design applied to monitoring and forecasting surface temperature in Antarctica

Abstract

As harsh weather conditions in Antarctica make it difficult to support a dense weather observing network there, it is critical to place new weather stations in locations that are optimal for a given monitoring goal. Here we demonstrate a network design algorithm that uses ensemble sensitivity to identify optimal locations for new automatic weather stations in Antarctica. We define the optimal location as one that maximizes the reduction in total variance of a given spatial field. Using WRF Model forecast output from the Antarctic Mesoscale Prediction System (AMPS), we identify the best locations for observations across the continent by considering two spatial fields: (i) the daily 0000 UTC 2-m temperature analysis field and (ii) the daily 0000 UTC 2-m air temperature 24-h forecast field. We explore the impact of spatial localization on the results, finding that a covariance length scale of 3000 km is appropriate for these metrics. We find optimal locations assuming that no stations exist on the continent (blank slate) and conditional on existing stations (CD90). In the "blank slate" scenario, the Megadunes region emerges as the most important location to both monitor temperature and reduce temperature forecast errors, with the Ronne Coast and the Siple Coast following. Results for the monitoring and forecasting metrics are similar for the CD90 subset as well, indicating that additional stations could benefit multiple performance goals. Considering the CD90 subset, Wilkes Land-Adelie Coast, Ellsworth Land, and Queen Maud Land-Interior are identified as regions to consider installing new stations for optimizing network performance.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77s7rzj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:23:18.082549

Metadata language

eng; USA